Airbus Julien Bernage PBN flight operations specialist

Advantages of PBN

- to increase access to remote airports

- to reduce congestion in terminal airspace

Aircraft Navigation From Coventional to PBN

1920 1930

5

1970's 1980's 1990's 2000's

1920- First Step toward Instrumental flight

LE PERTHUS (Pyr. Or) — Phare de la ligne aérienne Barcelone-Perpignan-Toulouse

1923 Aeronautical lighthouse

1920 - 1930 The pioneers of instrumental flight

+ 1929

First Instrumental flight by Jimmy Doolittle

+ **1930's**

ILS, gonio, NDB, VOR...

+ 1938 First ILS approach

First ILS

ILS: Instrument Landing System NDB: Non Directional Beacon

VOR: VHF Omni Range

Aircraft Navigation From Coventional to PBN

1990's

1920 1930 **1970's**

5

1980's

2000's

Up to 1970's- ILS and NAVAIDs era

DME: Distance Measurement Equipment VOR: VHF Omni Range

Up to 1970's- ILS and NAVAIDs era

Based on ground facilities

- + Precision Approach ILS with vertical guidance
- + Non Precision Approach Navaids (VOR DME)

Aircraft Navigation From Coventional to PBN

1990's

1920 1930 **1970's**

5

1980's

2000's

FMS propose vertical profile and guidance

Aircraft Navigation From Coventional to PBN

#1

1990's - The GNSS – Global Navigation Satellite System

Bring accuracy and integrity on position

+ PBN concept

the Navigation Performance

PBN: Performance Based Navigation RNP AR: required Navigation Performance with Authorization required

Faye 14

PBN Concept: Positioning

PBN Concept: Design of a RNP or RNAV procedure

+ On-board position error estimated

Accuracy

PBN Concept: Design of a RNP or RNAV procedure

+ On-board position error estimated

Accuracy

Integrity

PBN Concept

+ Accuracy criteria

TSE 95 % < 1 RNP

Under normal condition

A/C position inside 2 RNP corridor 95% of flight time

PBN Concept

+ Integrity criteria

TSE 99.999% < 2 RNP

A/C position inside 4 RNP corridor 99.999% of flight time

External Monitoring ATC (mode S, ADS-B,)

RNAV

On-Board Monitoring

Accuracy NAV ACCURACY Integrity GPS PRIMARY

RNP

FTE

XTK

Page 20

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.

TSE: Total system Error NSE: Navigation System Error FTE: Flight Technical Error

NSE: Navigation System Error FTE: Flight Technical Error

Aircraft Navigation From Coventional to PBN

RNP objectives

RNP AR: Required Navigation Performance with Authorisation Required

RNP objectives

PBN in terminal Area to face congested airspace

Manage High density Traffic

isto

Advantages of PBN for ANSP

+ Independent routes Not based from NAVAIDs location

+ Fully coded route NDB

+ Lateral & Vertical containment

- Reduction of the separations
- Solution for traffic segregations between 2 airports
- Noise sensitive area avoidance

Page 27

CCO : Continuous Climb Operation CDO : Continuous Descent Operation **AIRBUS**

#2PBN Operations
Focus on Terminal Airpsace

Lot of different operations and names

\rightarrow Difficult to find our way around

ICAO PBN MANUAL (Doc 9613) PANS-OPS (Doc 8168)	Navigation Specification	Navigation Accuracy (NM) per flight phase									
		En-route			Approach						
		Oceanic Remote	Continental	Terminal	Initial Interm.	Final	Missed	Departure			
=	RNAV 10 (RNP 10)	10							PBN		
	RNAV 5		5	5					512	anda	
Navigation (PBN) Manual	RNAV 2		2	2				2			
	RNAV 1		1	1	1		1	1			
	RNP 4	4									
	RNP 2	2	2								
	RNP 1			1	1		1	1			
	RNP APCH				1	0.3 or angular	1				
	RNP AR APCH				1-0.1	0.3-0.1	1-0.1				

PBN Manual and Airbus documentation

Operational documentation (AFM/FCOM) Statement of compliance with EASA or FAA regulation

Page 31

C AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.

FAA: Federal Aviation Administration EASA: European Aviation Safety Agency AFM: Aircraft Flight Manual FCOM: Flight Crew Operating Manual

Airbus Flight Operations documentation

+ PBN Capability declared in AFM (LIM / 22 AFS)

+ PBN procedures detailed in FCOM

+ **Dispatch conditions for PBN** indicated in **MMEL**

Focus on RNP in terminal area

RNAV 1 or RNP 1

RNAV 1 and RNP 1 procedure design

+ Same corridor definition but

- + Same corridor definition
- +1 NM RNP value
- + Terminal Airspace, for SID and STARS

RNAV 1 vs RNP 1

+ Same corridor definition BUT

	RNAV 1	RNP 1
On Board Performance Monitoring and Alerting System need	OBPMA not mandatory → ATC controller needed	OBPMA mandatory : A/C autonomous
GPS	Optional (possibility to use IRS/NAVAIDS)	GPS Mandatory
Regulation	EASA TGL 10 FAA AC 90-100A	No EASA regulation FAA AC 90-105 (A)
Airbus A/C complance	All Airbus	With GPS

RNP APCH

+ Overlay of existing procedure

+ RNP value 0.3NM in final separation obstacle avoidance lower minima

+ Decongestion of Terminal Airspace

FAF: Final Approach Fix

RNP APCH

Concept: + Straight approach after FAF

+ RNP 0.3 NM in Final Leg

+ RNP 1 NM in Initial, Intermediate and Missed Approach

Concept: + Straight approach after FAF

+ RNP 0.3 NM in Final Leg

+ **RNP 1 NM** in Initial, Intermediate and **Missed Approach**

+ Several minima

🍘 AIRBUS

FAF: Final Aproach Fix

LNAV: Lateral Navigation VNAV: Vertical Navigation LPV: Localizer Performance with Vertical guidance

LPV

RNP APCH

+ Operation charted RNAV(GNSS) or RNAV(GPS)

Advanced RNP and RF leg

RF: Radius to Fix

© AIRBUS S.A.S. All rights reserved. Confidential and proprieta

Advanced RNP according to ICAO PBN Manual

New operation

+ Concern operation RNAV 5, 2, 1 RNP 2, 1, APCH

+ Functional requirement

- RF legs
- Fixed Radius Transition optional
- RNP scalability
- Higher continuity
- Baro VNAV
- Time Of Arrival Control

required

optional

optional

optional

RF: Radius to Fix

optional (not yet defined)

ADVANCED RNP: RF legs

RF leg capability

+ Decongestion of Terminal Airspace

+ Use of RF legs on + RNP 1 + RNP APCH outside Straight Final Approach

+ RF legs in Initial segment

- + But still the same procedure design
 - RNP=0.3 straight final approach (without RF)
 - RNP=1 outside final approach segment

RNP AR is needed

Buffers

AIRBUS

RNP AR: Authorisation Required

RNP AR in terrain-challenging environment

+RF turn after FAF

+ No Buffers (4 RNP corridor)

+ Low containment \rightarrow Design flexibility for terrain avoidance \rightarrow Lower minima

+ LNAV and VNAV guidance including on turn

RNP AR in traffic-challenging environment

+ Late turn

+ Closely Space Parallel Operation

RNP AR: Authorisation Required

Regulation

Aircraft compliance

Specific aircraft modification

Specific equipment (minimum configuration)

A320 and A330 family

+ Implies a Minimum configuration →2 MODs

+ RNP AR limited to 0.3NM

+ RNP AR below 0.3NM

- Airworthiness RNP value:
 EASA → 0.3NM
 FAA → 0.1NM
- RNP value down to 0.1NM depending of operation targeted,

→maximum reachable RNP value must be assess during the FOSA

+ RNP AR MOD limited to 0.3 NM only

Page 55

C AIRBUS S.A.S. All rights reserved. Confidential and proprietary docume

A350 XWB

+ RNP AR 0.1NM basic

• AMC 20-26 down to 0.1NM

→ Specific RNP AR Architecture & HMI design

- Triplex architecture
- RNP AR monitoring
- Back up functions
- Excessive deviation flashing

H3 GNSS augmentation New approach types

Differential GPS concept - New concept

Augmentation of the accuracy and integrity

- + GPS augmented position thanks to reference stations
- + Vertical geometrical Not barometric sensitive

+ 2 solutions:

GBAS (not part of PBN ops) SBAS

GBAS Landing System: GLS

GLS: Data transmitted to the A/C

+ GPS augmented position by VHF + Final Approach Segment data by VHF Anchor point coordinate Course Slope

MMR computes a virtual beam

+ Flown in G/S | LOC

xLS concept: GLS

+ Geometric

+ Common FCOM/SOP for all straight in approaches

GBAS on charts: GLS approach

+ Charted as GLS

- Angular protection same as ILS
- Geometric vertical guidance
- Minima down to 200 ft (CAT1)

GLS approaches

+ One station for all runways with different channel

+ Customisation

- Displaced Threshold
- Various slope
- + CAT I autoland capability
 - available on A380, 350, 330 and 320
- + CAT III autoland Under study

Operational (with dot: charts published)

- Planned Installations
- Special Category, S-CAT I (with dot: charts published) Prototype/Research (with dot: actively transmitting)

+ Wide Area Network of reference stations

+ Transmission of the data via geostationary satellite

+ A/C system computes a virtual beam

Angular geometric guidance

March 2017

Data transmitted to the A/C

+ GPS augmented position by geostationary satellite

+ Final Approach Segment data in NDB Anchor point coordinate Course

Slope

MMR computes a virtual beam

+ Flown in G/S | LOC

xLS concept: SLS

Same guidance mode as ILS

+ Geometric

+ Common FCOM/SOP for all straight in approaches

SBAS: Satellite Based Augmentation System SLS: SBAS Landing System

SBAS on charts: LPV minima

+ RNAV(GNSS) with LPV minima

+ RNAV(GNSS) Approach BUT

- Angular protection (in addition to linear) same as ILS
- Geometric vertical guidance
- Minima down to **200 ft** (CAT1)

RNP APCH with LPV minima

- + Equivalent to CAT I
- + Customisation (as GLS)
 - Displaced Threshold Various slope
- + No specific on-ground station needed
- + Need to be **in an SBAS area** (in US with WAAS, in Europe with EGNOS)

Regulation		Aircraft compliance
	AC 90-107	
XX	AMC 20 -28	Optional on A350 (dedicated SB) Feasibility study on other Airbus A/C

SBAS: Satellite Based Augmentation System SLS: SBAS Landing System

#4 Next Steps

05A4

Next Steps: Regulation changes on PBN

Page 70

CCO : Continuous Climb Operation CDO : Continuous Descent Operation

Regional Aviation Forum - Bogota

Next Steps: Regulation changes on PBN

- + No more ops approval, except for RNP AR (SPA.PBN.100)
- + Generic ops approval for non specific RNP AR (SPA.PBN.105)

+ Generic RNP AR (Same rules for specific RNP AR (need of FOSA))

Page 71

ATPL: Airline Transport Pilot License IR: Instrument Rating

RNP procedure are key factor for traffic congestion in terminal area

RNP capability basic for all A/C equipped with GPS

RNP AR need specific MOD and configuration

New approaches ILS like based on augmented GNSS positions

larch 2017
Getting to Grips

Getting to Grips				
6 AIRBUS	World Context	tomization Aircraft type Tail Number - M A300 A300-600 A3	SN ATA 34	Airbus Flight Operations October 2016 - Issue 1
🔒 Home	Content library			
Search	Airworthiness and Certification 🗸	Use context		
App catalogue	Corporate Jets 🗸 🗸	Revision Date: From 🔯 to 🔯	Filter	Getting to grips
E Content library	Events 🗸	Results :		WITH PBN Performance-Based
🞍 Downloads	Flight Operations 🗸 🗸	and fuel saving		Navigation _
Dublication tool	Manuals 🗸 🗸	Getting to Grips with Aircraft Noise	01 Dec 2003	
	Operational Expertise 🗸 🗸	Getting to Grips with Aircraft Performance	01 Jan 2002	
⑦ HELP / Contacts	Digest of available enhancements	Getting to Grips with Aircraft Performance Monitoring	01 Jan 2003	
	Flight Deck and Systems Briefing For Pil	Getting to Grips with Cabin Safety	01 Apr 2015	
	Getting to Grips	Getting to Grips with Cat II & III Operations	01 Oct 2001	
¢	Specific Flight Operations Topics	Getting to Grips with Cold Weather Operations	01 Dec 2015	
	Miscellaneous 🔶 🚊	Getting to Grips with Cost Index	01 May 1998	
	Information on applications 🗸 🗸	Getting to Grips with ETOPS volume 1: certification and approval	01 Dec 2014	
	Leasing ~	Getting to Grips with ETOPS volume 2: the flight operations view	01 Dec 2014	
	Maintenance and Engineering 🗸 🗸	Getting to Grips with FANS	01 May 2014	
	Material Solutions 🗸 🗸	Getting to Grips with Fuel Economy	01 Oct 2004	
	Publications 🗸 🗸	fertingeto Geips with NewEL and MEL	01 1 2005	
	Supplier Support 🗸 🗸 🗸	Getting to Grips with Performance-Based Navigation (PBN) - High Resolution (50Mo)	09 Nov 2016	
	Training 🗸 🗸	Getting to Grips with Performance-Based Navigation (PBN) - Light Edition (8Mo)	08 Nov 2016	
		Setting ten Sriper vite sur an lar		
© Copyright Airbus - 2016		Getting to Grips with Weight and Balance	01 Feb 2004	~ ~

© Airbus S.A.S. All rights reserved. Confidential and proprietary document. This document and all information contained herein is the sole property of AIRBUS. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied. The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof. AIRBUS, its logo, A300, A310, A318, A319, A320, A320, A350, A360, A400M are registered trademarks.

