

Runway Safe EMAS

Aviation Safety

Aviation Industry Record

• International Air Travel Has Reached High Levels of Safety

Travel distances that will raise your risk of dying by 1 in a million - short bars are bad

RUNWAY SAFE 14144 Trautwein Road Austin, Texas 78737 USA

Aviation Safety

Result of Pro-Active Approach to Safety

- Extensive Review of Incidents
- Focus on Mitigation of Risks
- Continued Diligence Required
 - New Methods for Maintaining and Improving Safety Are Necessary
 - Failure to do so Will Result in a Plateau in Safety

Improving Aviation Safety

• Identify the Issue

- Analysis of Data and Statistics
- Input From Sectors of the
- Implement Action
 - Procedures
 - Training
 - Regulation
 - Technology

Technology As A Solution

Runway End Safety Area

- US Federal Mandate to Bring All Commercial Runway Safety Areas Into Compliance
- Large Quantity of Deficiencies in Runway End Safety Area

Standard RESA

Runway Excursions

- Most Common Type of Aviation Incident
- Average of Two Occurrences Per Month Globally
- Runway Overruns Account for More Than 50% of Runway Excursions

Factors Attributing to Deficiencies

RUNWAY SAFE 14144 Trautwein Road Austin, Texas 78737 USA

EMAS As A Solution

EMAS – ENGINEERED MATERIAL ARRESTING SYSTEM

Arrests Aircraft in the Event of a Runway Excursion

- No Major Damage to Aircraft
- No Injury to Passengers
- Option for Meeting ICAO RESA Requirements

Runway End Safety Area With EMAS

Runway Safe greenEMAS

The World's Only Green EMAS

Key Aspects

- Made From Recycled Glass
- Ease of Installation
- Durability and Low Cost
- Complies with Advisory Circular 150/5220-22C

Runway Safe greenEMAS

- Construction results in a system resistant to the harsh elements of a runway's environment
 - Utilizes Normal Construction Means and Methods

Silica Foam Material

- Loose fill material
- Each piece is crushable foamed glass
- Recycled material (Green)
- Excellent environmental performance
- Typical uses: low density fill, roadbase material, insulation, athletic fields, etc.

Development Process

ACRP Background

- Project executed through US National Academy of Science's Transportation Research Board (TRB) Airport Cooperative Research Program (ACRP)
- Effort ran from 2007 2009
- Principal investigator: Protection Engineering Consultants and Matthew Barsotti
- ACRP Report 29: "Developing Improved Civil Aircraft Arresting Systems"
 - Designed to identify and vet alternatives to the current ESCO EMAS
- NGG was a participant and had a "finalist" candidate design

Development & Performance Prediction Correlation

Austin, Texas 78737 USA

Jetblast Uplift Design

- Worst case for design basis
 - Operational basis for construction period

Below ~70 mp

Below 150 mph jetblast in ramp

ietblast in platea

RUNWAY SAFE 14144 Trautwein Road Austin, Texas 78737 USA

Fire Testing and AARF Vehicle Tests

• Burn pan and Abrasion tests at FAA William J. Hughes Technical Center

RUNWAY SAFE 14144 Trautwein Road Austin, Texas 78737 USA

21

FAA Acceptance

- FAA reviewed major NGG submittal report for compliance with AC 150/5220-22a
 - June 8, 2011
- Robust set of requirements
- Additional clarifications requested
- Three further addendums to report submitted
 - October and November 2011
- Accepted by FAA on April 2, 2012
- Further Development Underway

Performance Prediction

Performance Prediction Approach

1. Gather Airport Specific Information

- Fleet Mix
- Available RSA
- Site Specific Limitations

2. Develop Preliminary Performance Predictions

- Bed Geometry
- Predicted Performance

3. Refine EMAS Design

- Evaluate Airport Input From Preliminary Design
- Evaluate Alternate EMAS Options
- Provide Final Design Options

RUNWAY SAFE 14144 Trautwein Road Austin, Texas 78737 USA

Performance Cases

Example of Performance Predictions...LIH

- Conceptual non-standard system at LIH
 in Hawaii (Kauai)
 - EMAS on 21 Numbered End...minimal runway reconfiguration
 - EMAS on 3 Numbered End...runway reconfiguration
 - Predictions based on 767-300 (ER variant)
 - B763 only considered for preliminary predictions

Performance Predictions – Example

- Conceptual System at LIH in Hawaii
 - EMAS considered as option for RWY 21 Numbered End
 - B763 only considered for preliminary predictions

Site Location:	Lihue Airport		
Runway End ID:	Runway 21 Departure End (3 Numbered End)		
RSA Length	330-ft		
Provided Setback:	35-ft		
Bed Length:	295-ft		
Max Depth:	20-in		
Entry Ramp Length:	65-ft		

EMAS PERFORMANCE SUMMARY - MTOW							
Aircraft Model	MTOW [lbs]	Performance Results					
		Design Case [knots]	Typical Case [knots]	Notes			
B763 (Boeing 767-300) [ER Variant]	412,000	55 [58*]	58 [69*]				

EMAS PERFORMANCE SUMMARY – 80%MLW							
Aircraft Model	80% MLW [lbs]	Performance Results					
		Design Case [knots]	Typical Case [knots]	Notes			
B763 (Boeing 767-300) [ER Variant]	256,000	56	70				

Design Case: using 0.25 braking coefficient and no reverse thrust (μ = 0.25; No T/R) Typical Case: using 0.35 braking coefficient and full reverse thrust (μ = 0.35; Full T/R) [...*]: Overload stop: alternate exit speed with predicted nose gear overload

RUNWAY SAFE 14144 Trautwein Road Austin, Texas 78737 USA

Thank You

